KEK Digital Accelerator and Latest Switching Device R&D

Ken Takayama on behalf of KEK Digital Accelerator Group

High Energy Accelerator Research Organization (KEK)
Tokyo Institute of Technology

19th International Symposium on Heavy Ion Inertial Fusion

12th August – 17th August 2012 in Berkeley

Contents

- Outline of KEK Digital Accelerator
 (A fast cycle induction synchrotron *)
 Key components
- 2. Beam commissioning results
- 3. SPS development employing SiC-JFETs
- 4. Summary

Companion paper (Poster Session of Thursday afternoon, 105):

T. Yoshimoto *et al.*, "Heavy Ion Beam Acceleration in the KEK Digital Accelerator: Induction Acceleration from 200 keV to a few tens MeV"

KEK Digital Accelerator (Rapid Cycle Induction Synchrotron)

Einzel Lens Longitudinal Chopper: Idea, Device, Performance

Beam Profile on the Screen Monitor placed upstream in LEBT

Beam profile plotted by the result from "Screen Monitor

200 keV H1+ 100 μA

	Horizontal rms emittance ε _ν [μmrad]	Vertical rms emittance, ε _ν [μmrad]
Measuremenr by Pepper	~100	~75
pot device		

DA Ring Machine & Beam Parameters

Combined-function type magnet (lower half)

F-sector

B-function

F-sector

D-sector

Beam envelope

Bending radius	ρ	3.3 m
Ring circumference	Co	37.7 m
Maximum flux density	B _{max}	0.84 T
Accel. voltage/turn	V	3.24 kV
Repetition rate	f	10 Hz
Betatron tune	$v_{\rm x}/v_{\rm v}$	2.17/2.3

Resonant LCR Circuit Power Supply

the Choke Transformer

Beam Orbit Issues associated with Low Energy Injection

Injection Orbit Error

originated from error fields of upstream components

$$x(t) = \sqrt{\varepsilon\beta(sM)}\cos\left[2\pi Q\cdot\frac{v}{C}\cdot t + \delta\right] + x_{cod}(sM)$$
before correction after correction
$$x(t) \text{ (m)} \qquad t = TxN \text{ (T: revolution time period, 12 } \mu\text{sec}\right) \qquad \text{after correction}$$

$$x_{cod}(sM) \qquad \sqrt{\varepsilon\beta(sM)}$$

originated from residual flux density in the main magnets

5 Gauss
$$< B_{remnant} < 10$$
 Gauss $B_{inj} \cong 200 - 400$ Gauss

It is significant at the injection energy.

Closed Orbit Distortion COD correction method:

limited number of position monitor (5) and no space for correction mag.

>8 figure correction coil winding

Results:

- ➤ Practically its size is acceptable.
- ➤ Current correction is still not enough; 3rd harmonic seems to appear in residual COD.

Beam Commissioning (1): Free Circulation at E_{inj} under B_{min}

Induction Acceleration Scenario in a Rapid Cycle Induction Synchrotron

Technical Limitation of Induction Acceleration Cell

1) Fixed output voltage V_{out} = ~ 1 - 2 kV/cell

Primary voltage is not easily changed.

2) Maximum rep-rate ~ 1 MHz

Heat deposit is serious beyond 1 MHz.

(If magnet ramping is slow)

1) Pulse density control

(If higher rep-rate is required)

2) Intermittent operation

9

Fully Programmed Control System

Confinement / Acceleration Voltage Pulses and Trapped Beam Pulse

Beam Commissioning (2): Barrier Volt. Confinement at E_{inj} under B_{min}

Beam Commissioning (3): Bunch Squeezing Experiment

Beam Commissioning (4): Demonstration of He1+ Acceleration (Preliminary)

Turn No Time after injection

He ion bunch signal

Barrier voltage pulse

Acceleration voltage pulse

Provided ion species and parameters at KEK Digital Accelerator

lon source	ion	energy	Particle number/sec
ECR Ion Source	H, He, C, N, O, Ne, Ar	< 140 MeV/au, 200MeV	<10 ¹⁰
Laser Ablation Ion Source	Xe, Fe, Cu, Ag, Au	< 70 MeV/au	< 10 ⁹

Induction acceleration to the final energy (0.84 T)

- by fully programmed control based on B-clock trigger
- 2. by Beam feedback control

(1) Laboratory Space Science experiment using virtual cosmic rays In collaboration with JAXA-ISAS/NAO/Yokohama Nat. Univ.

In collaboration with RIKEN-BNL Research Center/TokyoTech

Next Generation of SPS and Test driving the Induction Cell at 1 MHz

From MOSFET to SiC-JFET

Properties of SiC:

- Wide band-gap
- Withstand voltage, 10 times higher
- Drift velocity of e⁻, 2 times faster
- Thermal conductivity, 3 times better
- Operating temperature >300 °C

1.2 kV, 50 A SiC-JFET (SICED)
Package devloped
by KEK/SunA

Circuit of the SPS

Present SPS (1st) using 4x7=28 MOSFETs

Newly developed SPS (2nd)
using 4 SiC-JFETs
(still breadboard circuit)

Output Waveform in the Actual Cell Combination Test (100ns/div.) 1MHz

by courtesy of K.Okamura (KEK)

3rd generation

using 8 SiC-JFETs (2.4 kV, 50A) capability of removing heat deposit of 1kW, under development

Summary

- Beam Commissioning of KEK Digital Accelerator integrating newly developed Einzel lens longitudinal chopper
- > Induction acceleration was confirmed (but not its final energy yet).
- > Beam handling using barrier voltage pulses was demonstrated with increasing freedom of beam handling in the longitudinal direction.

Consequently,

■ it turned out that Induction Synchrotron Concept can work as

Slow Cycle Synchrotron (2 sec, KEK 12 GeV PS, 2006) Rapid Cycle Synchrotron (50 msec, KEK-DA, 2011)

- New switching power supply based on SiC-JFETs for future high current IS has been demonstrated.
- Plan/possibility of applications utilizing heavy ions (virtual cosmic-rays) from DA
- > Laboratory Space Science: Systematic development of electric circuits to work in space (single ion phenomena), confirmation of "origin of life" (authorized)
- Industrial /medical use:
- Use of high energy ion track through materials
- The next generation of hadron cancer therapy with option of *C-11 cancer therapy*
- Various beam handling experiment for HIF and WDM Science